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Abstraet--A new tetrathiafulvalene tetra(benzo-15-crown-5)ether ligand (4) has been pre- 
pared and polymetallic alkali metal complexes of 4 .4Na  ÷ and 4 . 2 K  ÷ stoichiometries 
isolated. Relatively small anodic perturbations of the redox-active ligand's redox couples 
were observed in the presence of either alkali metal cation. 

The design of new chemical sensors 1'2 and redox 
switchable ligands 3 has led in recent years to the 
syntheses of a variety of organometallic and tran- 
sition metal coordinated redox-active macrocyclic 
receptor molecules, which have been shown to elec- 
trochemically recognize, in some cases selectively, 
cationic and anionic guests in polar solvents includ- 
ing water. 4'5 The tetrathiafulvalene (TTF) moiety is 
an attractive organic redox centre to incorporate or 
append to various macrocyclic host cavities, and 
indeed Otsubo and Ogura 6 and Becher et aL 7 have 
recently prepared some TTF--crown ether deriva- 
tives. We report here the synthesis, coordination 
and electrochemical properties of a novel TTF- 
tetra(benzo-15-crown-5)ether ligand including the 
isolation of polymetallic complexes of sodium and 
potassium cations. 

RESULTS AND DISCUSSION 

Synthesis 

TTF (1) was treated with just over four equi- 
valents of lithium diisopropylamide at -78°C in 
dry tetrahydrofuran to give the tetralithium salt 
(2). 8 Reaction of 2 with the disulphide of benzo- 
l 5-crown-5 (3) 9 gave the new TTF-tetra(benzo-15- 
crown-5)ether ligand (4) as a yellow solid in 41% 
yield (Scheme 1). IH and 13C NMR spectroscopy, 
fast atom bombardment mass spectrometry 

(FABMS) and elemental analysis characterized the 
new redox-active ligand's proposed structure (see 
Experimental section). 

Coordination studies 

Refluxing 4 with acetonitrile solutions of excess 
amounts of sodium and potassium hexa- 
fluorophosphate salts led to the isolation of the 
respective alkali metal complexes as red solids in 
quantitative yields. The elemental analysis of the 
sodium complex (Table 1) indicated a 4Na+: 4 
stoichiometry in which one sodium cation is com- 
plexed within each of the benzo crown ether moi- 
eties (Fig. 1). With potassium the elemental analysis 
(Table 1) suggested 2K ÷ : 4 stoichiometry and the 
FABMS spectrum of the complex revealed a 
molecular ion at m/z = 1620, corresponding to 

Table 1. Elemental analyses for sodium and potassium 
complexes of 4 

Analysis a (%) 

Complex C H 

[4" Na4] (PF6)4 35.9 3.9 
(36.0) (3.7) 

[4" K21 (PF6)z 42.7 4.6 
(42.2) (4.3) 

* Author to whom correspondence should be addressed, a Calculated values in parentheses. 
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Scheme 1. 

[4"KzPF6] +. As a consequence of the potassium 
cation being larger in size than the cavity of the 
benzo-15-crown-5 ether ligand, it is well docu- 
mented that this alkali metal cation forms inter- 
and intramolecular sandwich complexes with 
mono- and bis-benzo-15-crown-5 ethers respec- 
tively. ~°'~ Taking this known coordination chem- 
istry into account, two possible structures for the 
potassium complex of 4 can be proposed. Figure 2a 
shows two K ÷ ions bound by one molecule of 4 and 

Fig. 2b the dimeric 4K ÷ : 2(4) analogue. Repeated 
attempts at obtaining crystals suitable for single 
crystal X-ray analysis have failed; however, molec- 
ular modelling and CPK models suggest the struc- 
ture shown in Fig. 2a is highly strained. In addition, 
there are solid state examples of charge-transfer 
complexes of TTF with acceptors such as TCNQ 
(tetracyanoquinodimethane), where the TTF rad- 
ical cations stack vertically 12 suggesting that the 
structure in Fig. 2b may be favoured for the pot- 
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Fig. 1. Proposed structure of polymetallic 4" sodium cation complex. 
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Fig. 2. Proposed structures of polymetallic 4- potassium cation complexes. 

assium complex of  4. Unfortunately, solubility 
problems prevented solution 1H and 13C N M R  
coordination studies to be undertaken with either 
Na + or K + cations. 

Electrochemical investigations 

The electrochemical properties of  4 were inves- 
tigated by cyclic voltammetry in an anhydrous ace- 
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Table 2. Electrochemical data 

TTF (1) 4 

1 st redox 2nd redox 1 st redox 2nd redox 
wave wave wave wave 

El/2 (V) a 0.42 0.82 0.60 0.87 
AEp (mV) b 70 80 80 95 
AEN.+ (mV) c - -  - -  ~< 10 ~< 10 
AEI,=+ (mV)' - -  ~< 10 ~< 10 

Obtained in acetonitrile-dichloromethane (1 : 1) solution containing 0.2 mol 
d m  -3  Bu4N BFa as supporting electrolyte. Solutions were c a  2 x 10 -3  in com- 
pound and potentials were determined with reference to a standard calomel 
electrode (SCE). 

b Separation between anodic and cathodic peak potentials. 
c Anodic shifts produced by presence of excess amounts of alkali metal cations 

(10 equivalents) added as their hexafiuorophosphate salts. 

tonitri le~lichloromethane (1: 1) solvent system 
using te t rabutylammonium tetrafluoroborate as 
base electrolyte, and the results are summarized in 
Table 2. The cyclic vo l tammogram of  4 exhibited 
two reversible one-electron oxidation redox couples 
(Fig. 3), which are significantly anodically shifted 
compared to T T F  (1) itself under analogous elec- 
trochemical solution conditions, AE = 180 and 50 
mV for the first and second oxidation potentials, 
respectively (Table 2). Related simple alkyl thio 
substituted T T F  derivatives also display more 
anodic oxidation redox couples than T T F  itself. ~3 

Disappointingly, alkali metal cation electro- 
chemical recognition studies revealed that the 

']I,0. 

~.0 0 
Potential ( v )  

Fig. 3. Cyclic voltammogram of 4 in acetonitrile-di- 
chloromethane (1 : 1) solution. 

addition of  excess amounts of  sodium or potassium 
cations to an electrochemical solution of 4 did not 
perturb the position of  either redox couple by a 
significant amount  (AE ~< 10 mV). This suggests 
that the binding of  the metal cations at the crown 
ether moieties is not being efficiently electro- 
statically communicated either through bonds or 
through space to the T T F  redox centre. However, 
it is noteworthy that in the case of  the sodium 
cation addition, the current increased steadily with 
increasing equivalents of  metal cation. A graphical 
representation of  change in c u r r e n t  m/pa versus 
molar  equivalents of  sodium cations is shown in 
Fig. 4. The resulting titration curve plateaus at 
approximately four equivalents of  Na  ÷, suggesting 
that 4 in solution forms the tetra-sodium complex 
shown in Fig. 1. A similar plot could not be drawn 
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Fig. 4. Titration curve of change in Ipa current of 4 versus 
equivalents of Na ÷ in acetonitrile-dichloromethane 

(1 : 1) solution. 
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for potassium because the increase in Ipa current 
was much less marked. 

It is even more surprising that the redox couples 
of  4 are electrochemically insensitive to either N a "  
or K ÷ cations when considering a recent pub- 
lication by Becher and co-workers, TM who report 
that the TTF-c rown  ether derivative (5) undergoes 

_ 

o , 

anodic perturbations of up to 80 mV with 100 equi- 
valents of  N a ' ,  although only a 10 mV shift was 
noted with K - .  

CONCLUSIONS 

A novel tetrathiafulvalene tetra(benzo-15- 
crown-5)ether ligand (4) was synthesized and 
shown to form polymetallic alkali metal complexes 
of  4 " 4 N a "  and 4"2K ÷ stoichiometries. Dis- 
appointingly, addition of  sodium or potassium cat- 
ions to an electrochemical solution of 4 did not 
significantly perturb the redox couples of  the ligand, 
indicating that alkali metal cation complexation is 
not being communicated to the TTF  redox centre. 

EXPERIMENTAL 

Solvent and reayen t pre- treatment 

Where necessary, solvents were purified prior to 
use and stored under nitrogen. Acetonitrile was pre- 
dried over 4 ,~ molecular sieves (4-8 mesh) and then 
distilled from Call2. Tetrahydrofuran was distilled 
from sodium using benzophenone as indicator. 

Unless otherwise stated, commercial grade 
chemicals were used without further purification. 
Bis(2,3,5,6,8,9,11,12-octahydro- 1,4,7,10,13-benzo- 
pentaoxacyclodecin-16-yl)disulphide (3) was pre- 
pared according to a literature procedure. 9 

All elemental analyses were carried out by the 
Inorganic Chemistry Laboratory Microanalysis 
Service. The N M R  spectra were recorded on a 
BrOker AM300 instrument, operating at 300 MHz 
for IH N M R  and 75.42 MHz for ~3C N M R  spectra. 
IR spectra were recorded on a Mattson 10410E 
"polaris" Fourier Transform Spectrometer. Elec- 
trochemical measurements were conducted on a 
Princeton Applied Research Potentiostat/ 
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Galvanostat Model 273. FABMS were carried out 
by the SERC mass spectrometry service at Uni- 
versity College, Swansea. Melting points were re- 
corded on a Gallenkamp melting point apparatus 
and are uncorrected. 

Synthesis 

Tetra(2,3,5,6,8,9,11,12 - octahydro- 1,4,7,10,13 - 
benzopentaoxacyclodecin - 16 - y/) - 1,2,3,4 - tetra- 
thiafulvalenylsulphide (34). To a solution of LDA, 
generated at 0°C with diisopropylamine (1.4 cm 3, 
10 mmol) and n-butyllithium (1.6 M in hexane, 6.3 
cm 3 10 mmol) in anhydrous T H F  (150 cm3), was 
added tetrathiafulvalene (0.5 g, 2.45 mmol) drop- 
wise in dry T H F  (60 cm 3) at - 78°C under nitrogen. 
A yellow suspension resulted and the mixture was 
stirred at - 78°C for 1 h. To the mixture was slowly 
added a solution of 3 (6.18 g, 10.3 mmol) in T H F  
(60 cm 3) at - 78°C. The resulting mixture was stirred 
for 1 h and then slowly allowed to warm to room 
temperature with stirring (15 h). The precipitate 
was collected, washed with T H F  (60 cm 3) and 
recrystallized from CHCI3-MeOH to give a yellow 
solid, 1.4 g, 41%. Melting point:  170-172°C. Mass 
spectrum (FAB) : m/z at 1397 = M + 1. Calc. for 
C62H76S8020 : C, 53.3; H, 5.4%. Found:  C, 53.3; 
H, 5.2. IH N M R  (CDC13) :6 3.78 (32H, s, OCH2 
CH20), 3.90 (16H, m, ArOCHzCHz), 4.10 (16H, 
m, ArOCI-I2CH2), 6.75-7.10 (12H, m, ArH). 13C 
N M R  (CDC13): t5 69.13, 69.45, 70.53, 71.18 
(OCH2), 114.16, 117.74, 124.05, 125.64, 149.31, 
149.90 (ArC and TTF- -C) .  

Sodium and potassium complexes of 4 

To an acetonitrile solution of  4 was added an 
excess amount  of sodium or potassium hexa- 
fluorophosphate. The mixture was refluxed for 30 
min and on cooling a red precipitate was collected 
by filtration in quantitative yields. Elemental analy- 
ses of the respective complexes are shown in Table 1. 
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